

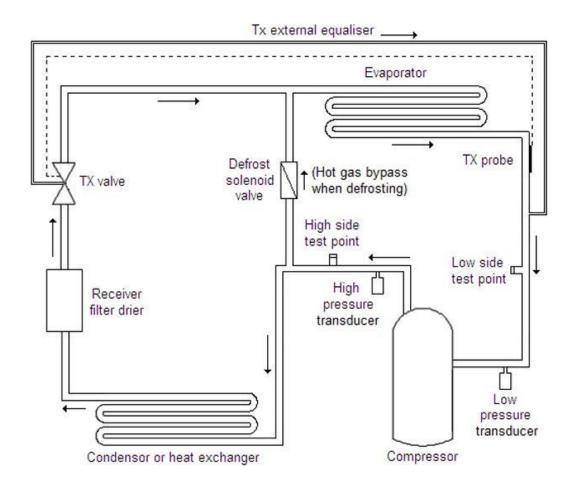
A2W – W2W HEAT PUMP TRAINING MODULE 1

19/07/2023

HEATING 📫 COOLING 💥 WATER HEATING

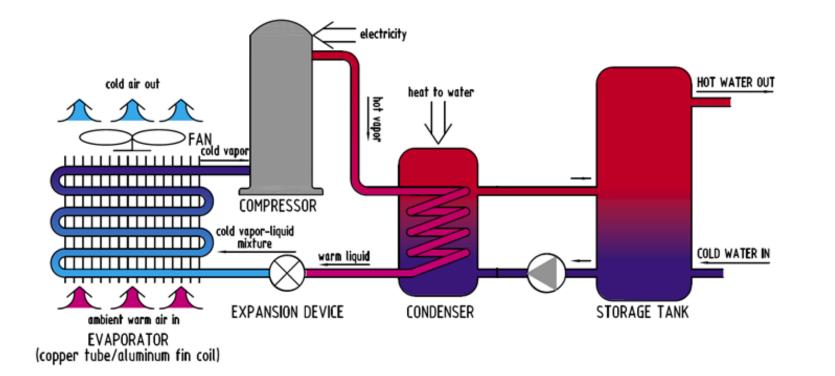
Outline – Module 1

- Principal of Heat Pump
- Nomenclature
- Product Range
- Overview
- Difference Between A2W-W2W
- Types of System and Installation Diagram
- Key Components & Features
- Performance



What is a Heat Pump?

- Similar to air conditioner
- Uses vapour compression cycle to transfer low grade heat energy into hot water.
- The energy source is free and due to the vapour compression cycle only the energy used to drive electrical equipment is consumed, making heat pumps extremely energy efficient.



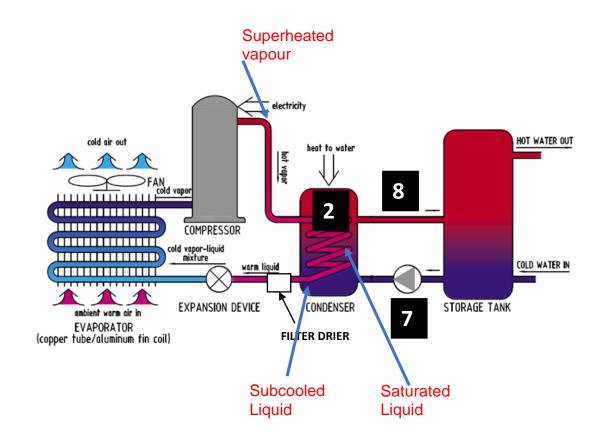
Compression Cycle & Heat Pump

- 1: Compressor
- 2: Hot water HEX
- 3: Filter/drier.
- 4: Expansion device

- 5: Evaporator
- 6: Fan
- 7: HEX water in
- 8: HEX water out

The five main components of the sealed refrigeration system are the compressor (1), hot water heat exchanger (2), receiver filter/drier (3), expansion device (TXV or EEV) (4), and evaporator (5).

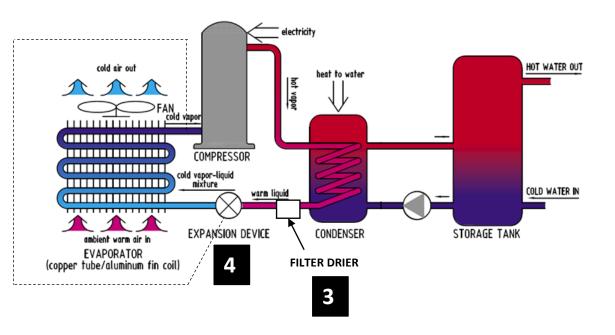
Refrigerant enters the compressor (1) as a low pressure superheated vapour. The compressor increases the pressure of the refrigerant vapour by decreasing its volume, as well as increasing its temperature due to the addition of the heat of compression.



The high pressure, high temperature superheated refrigerant vapour flows to the hot water heat exchanger **(2)**, where it gives off its heat.

This heat is absorbed by the water from the storage tank(s) which is being circulated through a separate chamber in the hot water heat exchanger **(7/8)**.

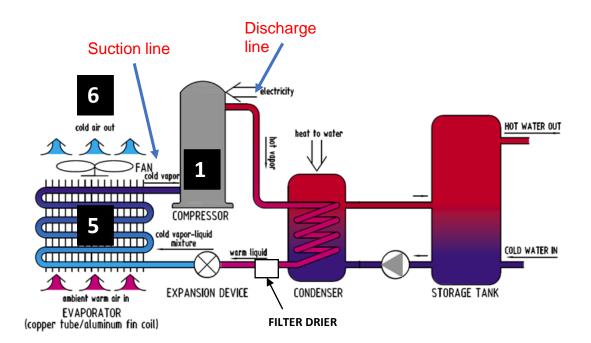
As the refrigerant gives off its heat and becomes cooler, it condenses (changes state) to a saturated liquid. Cooling of the saturated liquid refrigerant continues such that it becomes sub cooled, meaning it is cooled to a temperature below its saturation point.



The liquid refrigerant then moves through the receiver filter/drier (3) which traps impurities and removes moisture.

The liquid refrigerant then moves through the TXV or EEV (4), where it is expanded to a lower pressure by moving through the valve's orifice. The expansion process also lowers the temperature of the refrigerant, to a point below that of the surrounding ambient air.

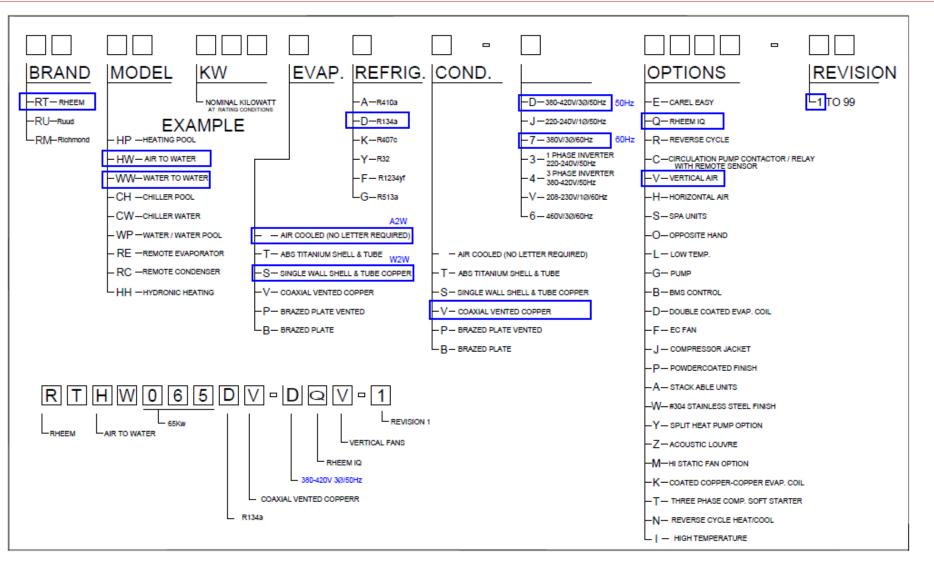
The TXV/EEV senses the temperature of the suction line at the evaporator outlet. The valve thermostatically meters the flow of expanding refrigerant in response to the temperature of the suction line.



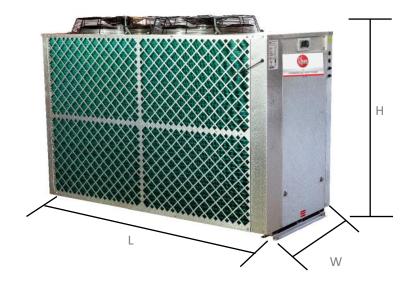
Following expansion, the low pressure, low temperature refrigerant moves into the evaporator (5) where it absorbs heat from the surrounding ambient air, which is drawn across the evaporator by the fans (6).

As the refrigerant absorbs heat and becomes warmer, it evaporates (changes state) to a saturated vapour. Heating of the saturated refrigerant vapour continues such that it becomes superheated, meaning it is heated to a temperature above its saturation point.

The low pressure superheated vapour then returns to the compressor (1) to complete the cycle.



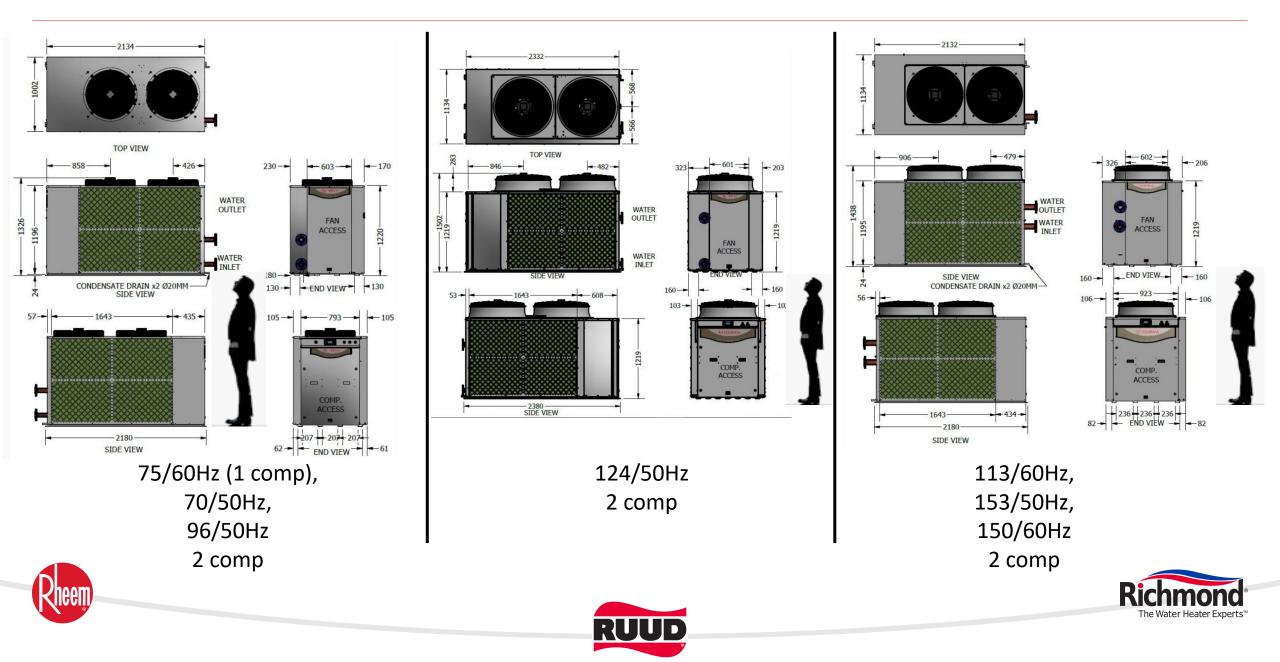
PRODUCT RANGE



Model Numbers & Dimensions

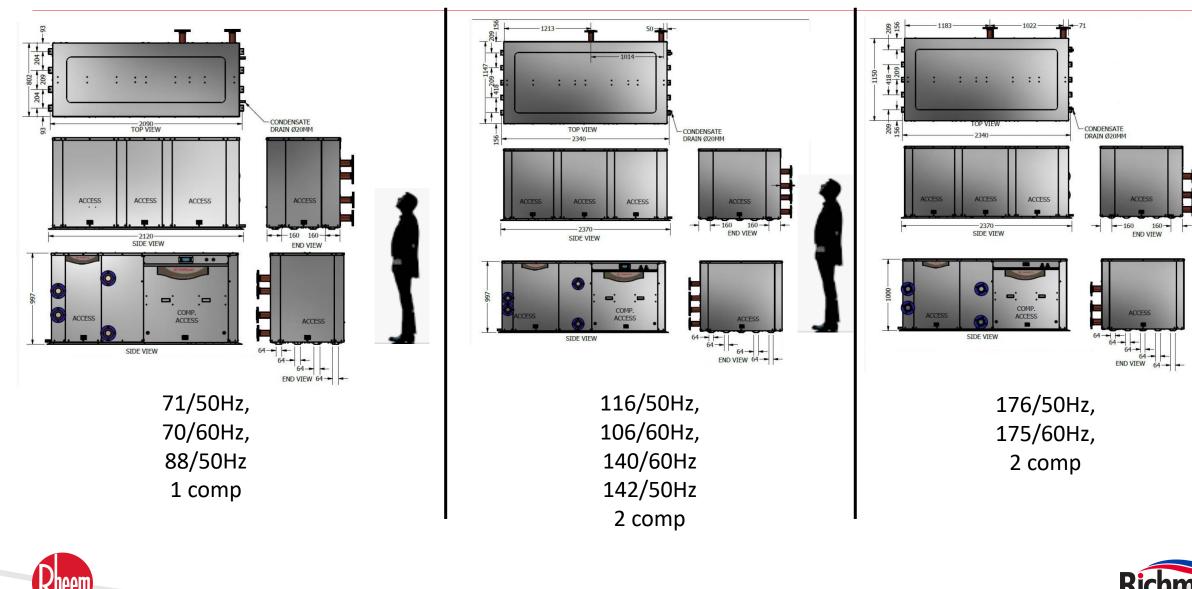
A2W Standard Model For 50Hz Market						
Air to Water Heat Pump	Heating Capacity (KW)	Dimensions (mm) Length x Width x Height				
RTHW070DV-DQV-1	70.8	2180 x 1002 x 1375				
RTHW096DV-DQV-1	94.9	2180 x 1134 x 1438				
RTHW124DV-DQV-1	121.8	2380x 1134 x 1476				
RTHW153DV-DQV-1	151.4	2540 x 1258 x 1933				
RTHW186DV-DQV-1	182.8	3463 x 1963 x 2348				
RTHW248DV-DQV-1	243.7	3595 x 1963 x 2288				

W2W Standard Model For 50Hz Market							
Water to Water Heat Pump	Heating Capacity (KW)	Dimensions (mm) Length x Width x Height					
RTWW071SDS-DQ-1	71.1	2120 x 805 x 1000					
RTWW088SDS-DQ-1	87.8	2120 x 805 x 1000					
RTWW116SDS-DQ-1	114.5	2370 x 1150 x 1000					
RTWW142SDS-DQ-1	142.3	2370 x 1150 x 1000					
RTWW176SDS-DQ-1	175.6	2370 x 1150 x 1000					
RTWW213SDS-DQ-1	213.46	2586 x 2240 x 1270					


For A2W at 30 °C Ambient Temperature with water out temperature of 45 °C (Max: 65 °C)

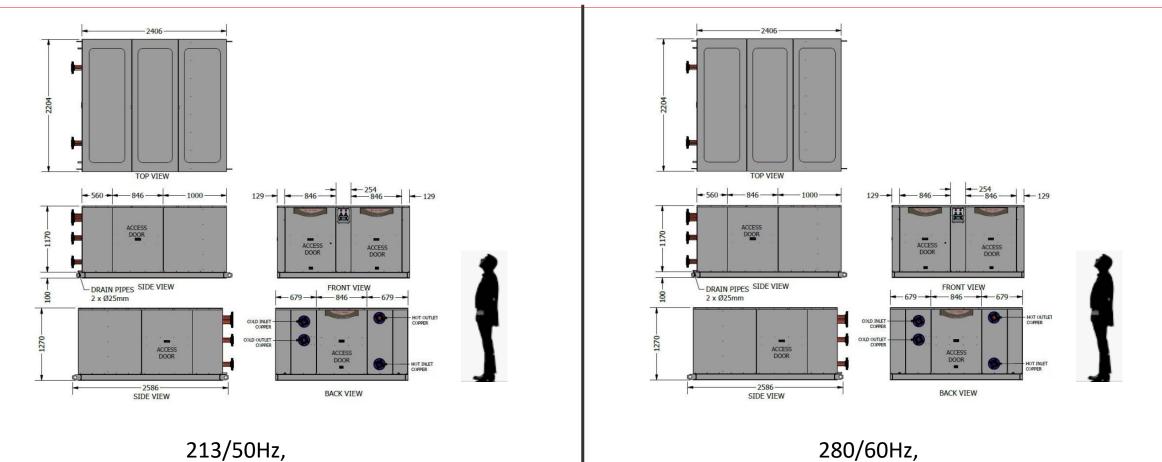
For W2W at 20 °C Cold water in Temperature with water out temperature of 45 °C (Max: 70°C)




A2W Range

A2W Range

W2W Range


RUUD

ACCESS

ACCESS

W2W Range

213/50Hz, 210/60Hz, 3 comp

4 comp

Difference Between A2W/W2W

Difference Between A2W/W2W

Heat pumps capture and then transfer energy stored in the form of heat from air and water into heating energy.

Heat energy in the surrounding air

Waste heat from air conditioning System

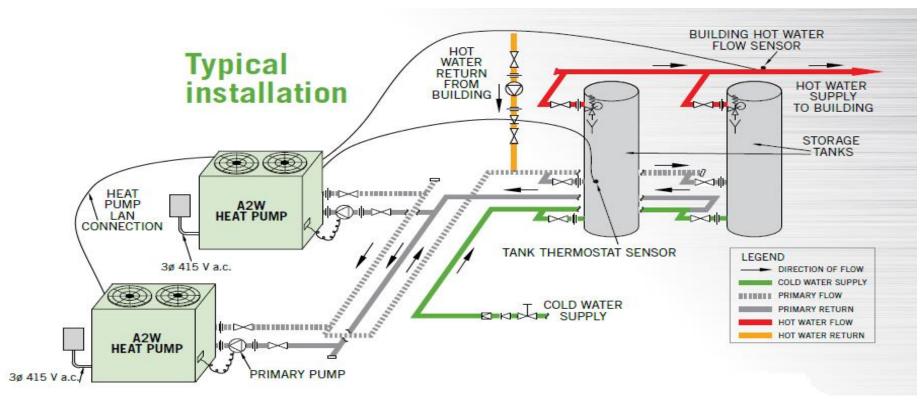
Is captured by an evaporator and then boosted by a compressor to a high temperature, at which point it is transferred via a condenser to heat water in a storage tank. This process is highly efficient.

The system saves energy, depending on the COP and operating conditions:

Up to four unit (A2W) or six units (W2W) of heating energy is gained for only one unit of electrical input energy.

Difference Between A2W/W2W

- A2W heat pump draws energy from the atmosphere (air) over an evaporator coil. Typical air temperatures can be from 5 to 46°C
 - Evaporator coil and fan used to draw energy
 - Efficiency and recovery improves as air temperature increases
 - Larger and more noise
- W2W heat pumps use a water source of energy. Typically from chiller return water (12°C) or cooling tower (35°C) or natural sources like the ocean or rivers (18-25°C)
 - Evaporator heat exchanger and pump used to draw energy
 - Efficiency and recovery improves as supply water temperature increases
 - Smaller and quieter

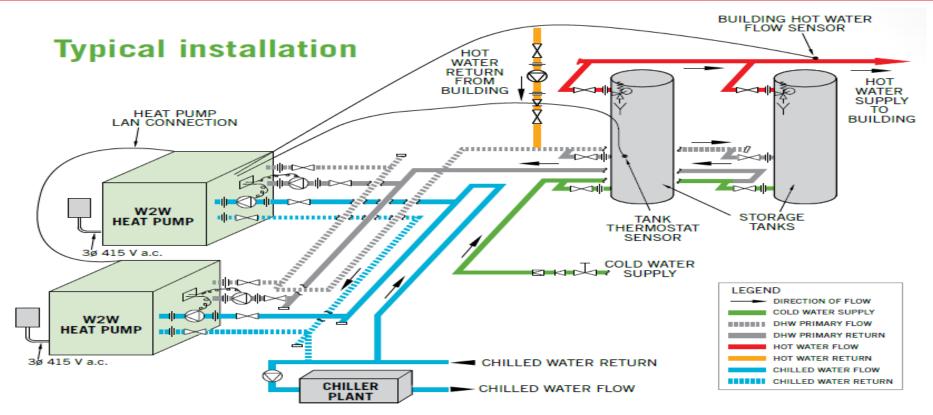

INSTALLATION SCHEMATICS

Types of System & Installation – A2W

The Rheem Heat Pump transfers heat from the ambient hot air efficiently.

The warmer is air temperatures more efficient is the HP water heating.

The versatile design of Rheem HP translates to heat gain even in low ambient temperatures


HP is Providing the potential for year-round heating across a range of climates.

Types of System & Installation – W2W

The Rheem W2W Heat Pump is a compact and quiet option where a water source is available.

Heat is sourced typically, from chiller return water (12oC) or cooling tower (35oC) or natural sources like the ocean or rivers (18-25oC)

A regular, consistent water source produces a stable high efficiency output, with the potential benefit of providing the dual function of hot water and chilled water supply.

- Heat Pump, Pump, Storage
- Tank sensor
- HP is a relatively slow recovery system
- Multi-pass heating
 - Requires more storage than kW
 - Need to design primary pump and pipe sizing
 - Potential in line boost
- W2W requires 2 x pumps
 - Hot water side (potable) and chilled water side (non-potable)

FEATURES & BENEFITS

Key Components and Features

HIGH PERFORMANCE DECARB PLATFORM

- 60Hz COP range 5.59 to 3.36
- 50Hz COP range 6.07 to 3.56
- Ambient range of 0C to 52C
- Contribute to CO2 reduction
- 60Hz COP range 6.81 to 4.04
- 50Hz COP range 7.01 to 4.05
- Cold water temp range of 12C to 35C
- Contribute to CO2 reduction

HIGH EFFICIENCY COMPRESSORS REFRIGERANT

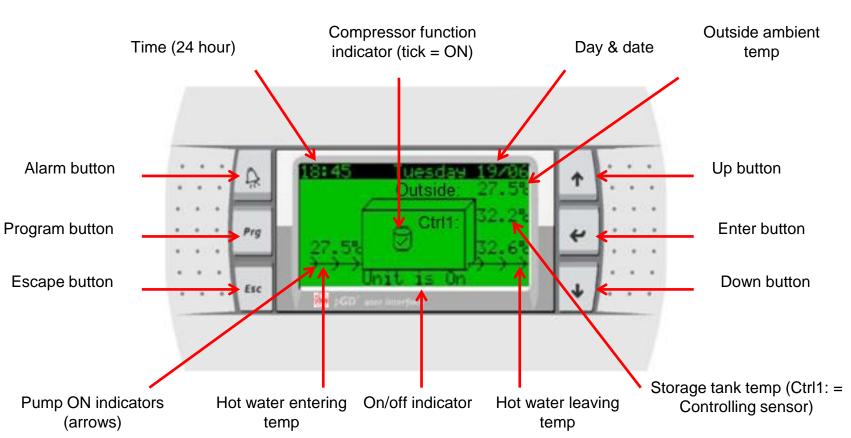
- High efficiency Scroll compressors
- Brand: Copeland
- Durable construction suitable for GCC
- R134A Low GDP (1430)

COATING

- Fully dipped and baked coating passes 5000hr salt spray test to ASTM B117 / AS 2331.32
- Rheem cote- dipped evaporator coils 3000hr
 - salt spray test fins fully formed.
- Ble fins coils have raw untreated fins assist with de-watering post de-ice cycle.

HIGH QUALITY CONSTRUCTION

- Copper shell in tube HX
- Single or double wall option
- Zinc annealed frame.
- Stucco aluminum casing
- Flange plate water connection
- Lifting lugs on most model



IQ Controller

IQ Controller :

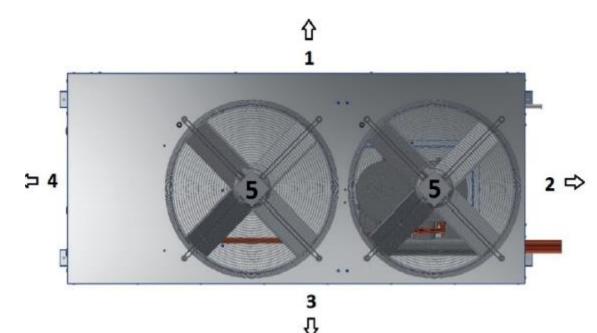
- Temperature control.
- Advance operation controls bot water and refrigerant side control using temperature and pressure sensors transducers optimize efficiency based on outside temp.
- Safety and serviceability.
- Saving Electricity costs.
- Saving pump cost.
- User integration features via BMS BAC net Modbus.

SYSTEM PERFORMANCE

Performance Information of A2W

	Model No.	I	RTHW070				
	Brand		Rheem				
		•					
ELECTRICA	AL INPUT						
Voltage/Phase	e	380 - 415 Volts / 3 Phase / 50 Hz					
Full Load Amp		40.2 /	Amps				
Locked Rotor	(Amps Per Phase)	118.0	Amps				
Min. Circuit Br	reaker Size	50.0 A	Amps				
Refrigerant		R13	34a				
Nominal Heat	ing Capacity	70.83	3 kW				
Power Input		14.00) kW				
COP		5.06	COP				
Noise Level		69 dBa	@ 3 m				
	Amps @ 12°C SST / 51°C SCT	27.0 4	Amps				
TECHNICAL	DATA						
		Compressor	Fan				
SAP Number		20018	21171				
Туре		Scroll	Axial 630				
Number Per L	Jnit	2	2				
LA (Full Load Amps, each)		19.0 Amps	1.1 Amps				
oltage / Phase		380 - 415 / 3	380 - 415 / 3				
Pole/RPM		2/2,900	6/890				
Air Flow		N/A	4700 L/s				
External Station	c Pressure	N/A	32 Pa				
HEAT EXCH	ANGER (Water Side)						
Type of Wate	r Tube	Single Wall	Double Wall				
Design		Shell and Tube	Co-axial Vented				
Flow Rate Exc	cl. By Pass	2.82 L/s					
Max. Outlet W	/ater Temp	65°C /	70°C*				
Design Press	ure Drop	50 k	Pa				
Max. Operatin	ng Pressure	2,450 kPa					
GENERAL I	NFORMATION						
Water Conne	ctions	65mm Tabl	e E Flange				
Drain		20mm Al	uminium				
Defrost		Reverse Cy	vcle De-ice				
Cabinet Cons	truction	1.2mm Stucc	o Aluminium				
Approx. Shipp	ping Weight	400	kg				
Size L x W x I	Н	2180mm x 1002	2mm x 1375mm				
UNIT CLEA	ARANCES						
Direction	Description	Minimum Clearance Required					
1	Evaporator Coil	1000mm					
2	Water Connections	500mm					
3	Evaporator Coil	1000mm					
4	Compressor Access	850mm					
5	Top – Fan Discharge	3500mm					

Water		A	mbient Terr	perature °	C		
Out °C	0 °C	5 °C	10 °C	15 °C	20 °C	25 °C	27 °C
45 °C	42.21 kW	47.84 kW	53.66 kW	58.23 kW	63.04 kW	66.41 kW	68.15 kW
4	3.05 COP	3.43 COP	3.84 COP	4.18 COP	4.53 COP	4.76 COP	4.88 COP
50 °C	41.00 kW	46.54 kW	52.17 kW	56.53 kW	61.07 kW	64.22 kW	65.85 kW
50 0	2.70 COP	3.02 COP	3.38 COP	3.67 COP	3.97 COP	4.19 COP	4.29 COP
55 °C	39.89 kW	45.35 kW	50.82 kW	55.01 kW	59.33 kW	62.31 kW	63.84 kW
55 0	2.46 COP	2.74 COP	3.05 COP	3.31 COP	3.58 COP	3.77 COP	3.87 COP
60 °C	38.63 kW	44.01 kW	49.32 kW	53.32 kW	57.42 kW	60.22 kW	61.66 kW
00 0	2.24 COP	2.49 COP	2.77 COP	2.99 COP	3.23 COP	3.40 COP	3.48 COP
65 °C	N/A	42.10 kW	47.19 kW	50.97 kW	54.78 kW	57.36 kW	58.67 kW
05 0	N/A	2.22 COP	2.45 COP	2.64 COP	2.84 COP	2.98 COP	3.06 COP
70 °C	N/A	N/A	N/A	N/A	51.82 kW	54.18 kW	55.36 kW
10 0	n/A	IN/PA	IN/PA	IN/PA	2.50 COP	2.62 COP	2.68 COP


RUUD

COP TABLE

Performance Information of A2W

When the units are placed sde by side, allow 2000mm distance between evaporator coils. Rating Conditions: 30°C ambient, 60% RH, 39°C Water in, 45°C Water out * Max outlet temperature when ambient is above 10°C

Performance Information of A2W

Water			Α	mbient Ter	emperature °C				
Out °C	0°C	5 °C	10 °C	15 °C	20 °C	25 °C	30 °C	35 °C	
45 °C	53.45 kW	60.97 kW	69.33 kW	76.24 kW	83.78 kW	89.19 kW	94.92 kW	97.92 kW	
40 0	2.76 COF	3.14 COP	3.57 COP	3.92 COP	4.29 COP	4.56 COP	4.84 COP	4.98 COP	
50 °C	52.37 kW	59.64 kW	67.68 kW	74.31 kW	81.53 kW	86.70 kW	92.18 kW	95.04 kW	
50 0	2.46 COP	2.79 COP	3.17 COP	3.47 COP	3.80 COP	4.04 COP	4.29 COP	4.42 COP	
55 °C	51.53 kW	58.61 kW	66.40 kW	72.80 kW	79.75 kW	84.73 kW	90.01 kW	92.76 kW	
33 0	2.23 COP	2.54 COP	2.87 COP	3.15 COP	3.44 COP	3.66 COP	3.88 COP	4.00 COP	
60 °C	50.74 kW	57.62 kW	65.15 kW	71.32 kW	78.01 kW	82.80 kW	87.87 kW	90.51 kW	
00 0	2.03 COF	2.30 COP	2.60 COP	2.85 COP	3.12 COP	3.31 COP	3.51 COP	3.61 COP	
65 °C	N/A	56.46 kW	63.67 kW	69.55 kW	75.91 kW	80.46 kW	85.27 kW	87.78 kW	
05 0	IN/A	2.04 COP	2.30 COP	2.52 COP	2.75 COP	2.91 COP	3.09 COP	3.18 COP	
70 °C	N/A	N/A	N/A	N/A	73.92 kW	78.23 kW	82.77 kW	85.15 kW	
10 0	IN/A	IN/A	IN/A	IN/A	2.42 COP	2.56 COP	2.71 COP	2.79 COP	

COP TABLE

- Input = Heating Capacity/COP. Eg
- At 45°C LWT / 30°C ambient, Input = 94.2/4.84 = **19.46kW**
- At 45°C LWT / 5°C ambient, Input = 60.97/3.14 = **19.42kW**
- At 60°C LWT / 30°C ambient, Input = 87.87/3.51 = **25.03kW**
- At 60°C LWT / 5°C ambient, Input = 57.62/2.30 = **25.05kW**

Both LWT and Ambient Temperature affect output and COP, but LWT affects Input

Performance Information of W2W

WATER-TO-WATER H	EAT PUMP SPEC	IFICATIONS			
Model No.		RTWW071			
Brand		Rheem			
ELECTRICAL INPUT					
Voltage/Phase	380 - 415 Volts	/ 3 Phase / 50 Hz			
Full Load / Locked Rotor (Amps Per Phase)	40.2 FLA / 272 LRA				
Min. Circuit Breaker Size	50.0 Amps				
Refrigerant	R134a				
Refrigeration Effect	Heating	Cooling			
Nominal Capacity	71.15 kW	56.97 kW			
Power Input	14.1	9 kW			
COP	5.02 COP	4.02 COP			
Combined COP	9.03	COP			
Noise Level	61 dBa	a @ 3 m			
Rated Load Amps @ 10°C SST / 51°C SCT	28.1	Amps			
TECHNICAL DATA					
	Compressor				
Make / Type	Copeland / Scroll 20103				
Number Per Unit		1			
FLA (Full Load Amps, each)		Amps			
Voltage / Phase	380 -	415 / 3			
Pole/RPM	2/2	,900			
HEAT EXCHANGER (Water Side)					
	Hot Side (Condenser)	Cold Side (Evaporator)			
Type of Water Tube	Single / Double Wall	Single Wall			
Design	Shell & Tube / Co-axial	Shell & Tube			
Flow Rate Excl. By Pass	2.84 L/s	2.73 L/s			
Max. Outlet Water Temp	70°C	N/A			
Min. Outlet Water Temp	N/A	7 °C			
Design Pressure Drop	50	kPa			
Max. Operating Pressure	2,45	0 kPa			
GENERAL INFORMATION					
Water Connections	65mm Table E Flange				
Drain	20mm A	luminium			
Cabinet Construction	1.2mm Stuc	co Aluminium			
Approx. Shipping Weight		0 kg			
Size L x W x H	2120mm x 805	5mm x 1000mm			

RUUD

Hot Water				Cold Wa	ter In °C			
Out °C	12 °C	14 °C	16 °C	18 °C	20 °C	25 °C	30 °C	35 °C
45 °C	57.19 kW	60.88 kW	62.82 kW	66.86 kW	71.15 kW	83.07 kW	96.85 kW	102.93 kW
45 0	4.09 COP	4.34 COP	4.47 COP	4.73 COP	5.02 COP	5.78 COP	6.64 COP	7.01 COP
50 °C	56.35 kW	59.90 kW	61.76 kW	65.65 kW	69.77 kW	81.20 kW	94.42 kW	100.26 kW
50 C	3.71 COP	3.93 COP	4.04 COP	4.28 COP	4.54 COP	5.23 COP	6.01 COP	6.35 COP
55 °C	55.38 kW	58.76 kW	60.53 kW	64.21 kW	68.12 kW	78.96 kW	91.48 kW	97.01 kW
55 0	3.27 COP	3.46 COP	3.56 COP	3.77 COP	3.99 COP	4.60 COP	5.29 COP	5.59 COP
60 °C	54.67 kW	57.92 kW	59.61 kW	63.14 kW	66.88 kW	77.24 kW	89.21 kW	94.49 kW
00 0	2.95 COP	3.12 COP	3.21 COP	3.40 COP	3.59 COP	4.13 COP	4.75 COP	5.02 COP
65 °C	53.88 kW	56.95 kW	58.55 kW	61.89 kW	65.42 kW	75.19 kW	86.47 kW	91.46 kW
00 0	2.60 COP	2.75 COP	2.82 COP	2.98 COP	3.15 COP	3.61 COP	4.14 COP	4.38 COP
70 °C	53.19 kW	56.10 kW	57.61 kW	60.75 kW	64.08 kW	73.26 kW	83.86 kW	88.54 kW
10 0	2.29 COP	2.41 COP	2.48 COP	2.61 COP	2.75 COP	3.15 COP	3.60 COP	3.80 COP

COP TABLE

Performance Information of W2W

WATER-TO-WATER H	EAT PUMP SPEC				
Model No.		RTWW071			
Brand		Rheem			
ELECTRICAL INPUT					
Voltage/Phase	380 - 415 Volts	/ 3 Phase / 50 Hz			
Full Load / Locked Rotor (Amps Per Phase)	40.2 FLA	/ 272 LRA			
Min, Circuit Breaker Size	50.0	Amps			
Refrigerant	R1	34a			
Refrigeration Effect	Heating Cooling				
Nominal Capacity	71.15 kW	56.97 kW			
Power Input	14.1	9 kW			
COP	5.02 COP	4.02 COP			
Combined COP	9.03	COP			
Noise Level	61 dBa	a @ 3 m			
Rated Load Amps @ 10°C SST / 51°C SCT	28.1	Amps			
TECHNICAL DATA					
	Compressor				
Make / Type	Copeland / Scroll 20103				
Number Per Unit	1				
FLA (Full Load Amps, each)	40.2	Amps			
Voltage / Phase	380 -	415 / 3			
Pole/RPM	2/2	,900			
HEAT EXCHANGER (Water Side)					
	Hot Side (Condenser)	Cold Side (Evaporator)			
Type of Water Tube	Single / Double Wall	Single Wall			
Design	Shell & Tube / Co-axial	Shell & Tube			
Flow Rate Excl. By Pass	2.84 L/s	2.73 L/s			
Max. Outlet Water Temp	70°C	N/A			
Min. Outlet Water Temp	N/A	7 °C			
Design Pressure Drop		kPa			
Max. Operating Pressure	2,45	0 kPa			
GENERAL INFORMATION					
Water Connections	65mm Table E Flange				
Drain	20mm Aluminium				
Cabinet Construction		co Aluminium			
Approx. Shipping Weight		0 kg			
Size L x W x H	2120mm x 805	5mm x 1000mm			

Hot Water		Cold Water In °C						
Out °C	12 °C	14 °C	16 °C	18 °C	20 °C	25 °C	30 °C	35 °C
45 °C	57.19 kW	60.88 kW	62.82 kW	66.86 kW	71.15 kW	83.07 kW	96.85 kW	102.93 kW
40 0	4.09 COP	4.34 COP	4.47 COP	4.73 COP	5.02 COP	5.78 COP	6.64 COP	7.01 COP
50 °C	56.35 kW	59.90 kW	61.76 kW	65.65 kW	69.77 kW	81.20 kW	94.42 kW	100.26 kW
30 0	3.71 COP	3.93 COP	4.04 COP	4.28 COP	4.54 COP	5.23 COP	6.01 COP	6.35 COP
55 °C	55.38 kW	58.76 kW	60.53 kW	64.21 kW	68.12 kW	78.96 kW	91.48 kW	97.01 kW
33 0	3.27 COP	3.46 COP	3.56 COP	3.77 COP	3.99 COP	4.60 COP	5.29 COP	5.59 COP
60 °C	54.67 kW	57.92 kW	59.61 kW	63.14 kW	66.88 kW	77.24 kW	89.21 kW	94.49 kW
00 0	2.95 COP	3.12 COP	3.21 COP	3.40 COP	3.59 COP	4.13 COP	4.75 COP	5.02 COP
65 °C	53.88 kW	56.95 kW	58.55 kW	61.89 kW	65.42 kW	75.19 kW	86.47 kW	91.46 kW
00 0	2.60 COP	2.75 COP	2.82 COP	2.98 COP	3.15 COP	3.61 COP	4.14 COP	4.38 COP
70 °C	53.19 kW	56.10 kW	57.61 kW	60.75 kW	64.08 kW	73.26 kW	83.86 kW	88.54 kW
10 0	2.29 COP	2.41 COP	2.48 COP	2.61 COP	2.75 COP	3.15 COP	3.60 COP	3.80 COP

COP TABLE

Rating Conditions: Cooling: 20°C EWT, 15°C LWT, Heating: 39°C EWT, 45°C LWT

Performance Information of W2W

	COP TABLE								
Hot Water				Cold Wa	ter In °C				
Out °C	12 °C	14 °C	16 °C	18 °C	20 °C	25 °C	30 °C	35 °C	
45.00	57.19 kW	60.88 kW	62.82 kW	66.86 kW	71.15 kW	83.07 kW	96.85 kW	102.93 kW	
45 °C	4.09 COP	4.34 COP	4.47 COP	4.73 COP	5.02 COP	5.78 COP	6.64 COP	7.01 COP	
50 °C	56.35 kW	59.90 kW	61.76 kW	65.65 kW	69.77 kW	81.20 kW	94.42 kW	100.26 kW	
50 °C	3.71 COP	3.93 COP	4.04 COP	4.28 COP	4.54 COP	5.23 COP	6.01 COP	6.35 COP	
55 °C	55.38 kW	58.76 kW	60.53 kW	64.21 kW	68.12 kW	78.96 kW	91.48 kW	97.01 kW	
35 0	3.27 COP	3.46 COP	3.56 COP	3.77 COP	3.99 COP	4.60 COP	5.29 COP	5.59 COP	
60 °C	54.67 kW	57.92 kW	59.61 kW	63.14 kW	66.88 kW	77.24 kW	89.21 kW	94.49 kW	
00 0	2.95 COP	3.12 COP	3.21 COP	3.40 COP	3.59 COP	4.13 COP	4.75 COP	5.02 COP	
65 °C	53.88 kW	56.95 kW	58.55 kW	61.89 kW	65.42 kW	75.19 kW	86.47 kW	91.46 kW	
65 °C	2.60 COP	2.75 COP	2.82 COP	2.98 COP	3.15 COP	3.61 COP	4.14 COP	4.38 COP	
70.00	53.19 kW	56.10 kW	57.61 kW	60.75 kW	64.08 kW	73.26 kW	83.86 kW	88.54 kW	
70 °C	2.29 COP	2.41 COP	2.48 COP	2.61 COP	2.75 COP	3.15 COP	3.60 COP	3.80 COP	

.

- Input = Heating Capacity/COP. Eg
- At 45°C LWT / 30°C condenser, Input = 96.85/6.64 = **14.58kW**
- At 60°C LWT / 30°C condenser, Input = 86.47/4.14 = **20.89kW**

Input is lower than A2W because W2W does not have fan power, and pump power is not included in the capacity measurement

APPLICATIONS

Applications

DOMESTIC HOT WATER

Water heating is a significant user of energy and can account for 25% of total household energy consumption giving a clear incentive to convert to a renewable heating technology

HIGH TEMPERATURE HOT WATER

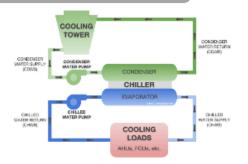
The specialist focus and research capability of our manufacturing base means that the heat pump can provide high efficiency hot water up to 70°C leaving water temperature (W2W)

MECHANICAL PROCESS WATER HEATING AND CHILLING

The highly efficient Heat Pump is used to provide electrically generated low-cost hot water in many specialist applications, ranging from hospitals, large office buildings and supermarkets to more diverse uses in manufacturing, mining and primary industry. Mechanical hot water or chilled water is typically supplied to fan coils for space heating or cooling and for process often the hot water is used directly.

Applications

HYDRONIC HEATING


Typically providing hot water at mid-range temperatures for home and building comfort, heating via either a hydronic loop or radiators, this range of high-efficiency heat pumps have also been used in primary industry applications such as piggeries, poultry farming and greenhouses.

HOT WATER TO CHILLED WATER

When coupled to a building's chilled water ring main, this Water-to-Water heat pump provides energy efficient water heating whilst simultaneously providing the byproduct of a chilled water supply.

Achilled water system using a water cooled chiller

THANK YOU!

19/07/2023

HEATING 📫 COOLING 💥 WATER HEATING